
Soft Robot Control With a Learned Differentiable Model

James M. Bern, Yannick Schnider, Pol Banzet, Nitish Kumar and Stelian Coros

Abstract— Soft robots are inherently safe and comply readily
to their environment. They are therefore exciting for appli-
cations like search and rescue or medicine, which involve
a high degree of uncertainty, and require interacting with
humans. However, the best way to model and control soft robots
largely remains an open question. One promising approach is
to leverage physically-based modeling techniques such as the
finite element method. However, such techniques are inherently
limited by their physical assumptions. Indeed, real-world soft
robots are often made from unpredictable materials, using im-
precise techniques. Data-driven approaches provide an exciting
alternative, as they can learn real-world fabrication defects and
asymmetries. In this paper we present our first investigation
into using machine learning to do soft robot control. We learn
a differentiable model of a soft robot’s quasi-static physics, and
then perform gradient-based optimization to find optimal open-
loop control inputs. We find that our learned model captures
phenomena that would be absent from an idealized physically-
based simulation. We also present practical techniques for
acquiring high-quality motion capture data, and observations
the effect of network complexity on model accuracy.

Index Terms— Soft robots, Modeling, Control, Learning

I. INTRODUCTION

Soft robotics promises to change the way people interact
with robots in multiple areas such as search and rescue [1],
entertainment [2], assistive robotics [3]–[5] and medical
robotics [6]. Because they are inherently safe, and able to
adapt to their surroundings, soft robots have the potential
to interact more closely and organically with people. Much
prior work has explored new soft materials and actuation
technologies [7]–[9], including pneumatically-actuated sili-
cone, and cable-driven foam [10].

However, the question of how to best model and control
soft robots remains largely open. This is because soft mate-
rials exhibit highly nonlinear behavior, that is further com-
plicated by imperfect fabrication and actuation techniques.
A general methodology for modeling and controlling soft
robots–especially one that can account for unforeseen varia-
tion in physical hardware–is therefore an especially exciting
research challenge. Such a methodology also promises to
be quite useful. Accurate simulation models of soft robots
open the door to multiple tasks in optimal control such
as trajectory tracking, trajectory optimization, and collision
avoidance [11]–[13].

Previous work on controlling soft robots can be loosely
divided into two general categories: those that make use of
physically-based simulation (model-based), and those that

James M. Bern, Yannick Schnider, Pol Banzet, Nitish Kumar and
Stelian Coros are with the Computational Robotics Lab in the Insti-
tute for Intelligent Interactive Systems (IIIS), ETH Zurich Switzerland.
{jamesmbern@gmail.com, yannicks@ethz.ch, pol.banzet@protonmail.com,
nitish.kumar@inf.ethz.ch, stelian.coros@inf.ethz.ch}

do not (data-driven). Physically-based modeling includes
simulation models based on e.g. elastic rods [14] or the finite
element method [15]–[17]. Such techniques have been shown
to be effective tools for controlling soft robots. However they
are typically limited in their ability to account for unforeseen
variations in physical hardware, though methods certainly
exist to fit or tune such models to better match reality [18].

Data-driven control methods typically use machine learn-
ing or regression techniques to build a model from real-
world sensor data. Specific techniques include e.g. Gaussian
mixture models (GMMs) [19], Gaussian process regressions
(GPR) [20], K-Nearest-Neighbors Regression (K-NNR) [21],
and identification of an approximate Koopman operator [22].
An example of such an approach is the recent work of Thu-
ruthel et al., which uses a recurrent neural network to sense
the contact force and position of an inflatable robot using
arbitrarily-placed redundant strain sensors [23]. Another
example of such an approach is the work of Li et al., which
uses a Kalman filter to estimate the manipulator Jacobian of
a continuum robot on the fly [24].

Data-driven methods for soft robotics often directly learn
a robot’s inverse kinematics [20], [21], [25]–[30]. However
soft robots may have redundant forward kinematics, meaning
different control inputs can lead to the same end effector
position. This makes the problem of inverse kinematics ill-
suited to standard regression or supervised learning tech-
niques [31]. This is because when multiple valid choices of
control input exist, such techniques return an interpolation
of these choices, which has no guarantee of itself being a
good choice.

An approach called distal supervised learning (DSL) was
developed to solve the problem of finding the inverse of a
nonlinear many-to-one mapping [31], which is exactly the
problem we face when controlling a redundant soft robot.
Our approach falls under the umbrella of DSL, specifically
the use of gradient-based optimization to search a learned
forward model. DSL works by exploiting a forward model
that is learned in a supervised fashion. This can be done
either by inverting the learned forward model using another
neural network [32], or by searching the learned forward
model using gradient-based optimization [33]. Here we
choose the latter strategy.

We show how to learn a model of a soft robot’s forward
kinematics, and how to search that model using gradient-
based techniques. This allows us to accurately track open-
loop trajectories. Additionally, we put our approach into
context with our previous work on a model-based technique
called Soft IK [17].

2020 3rd IEEE International Conference on Soft Robotics (RoboSoft)
Yale University, USA

417



Fig. 1. We use motion capture to acquire training data for a three degree
of freedom soft foam robotic arm.

II. METHOD

A. The Control Problem: Inverse kinematics

The traditional inverse kinematics problem asks the fol-
lowing question: Given a target end effector position y′, what
are optimal motor angles u∗? In other words, how should we
drive the robot’s motors in order to bring its resulting end
effector position as close as possible to the given target?
This problem can be solved using numerical optimization,
and is well-suited to gradient-based methods such as gradient
descent or L-BFGS. For traditional rigid robots–which only
rotate about prespecified joints–the relationship y(u) is
analytic. This makes gradients straightforward to compute in
closed form. Soft robots however, are quite a different story.
They are free to exhibit continuous deformations across their
entire bodies, and so more sophisticated methods are required
to solve their inverse kinematics.

B. Prior Work: Soft IK, a sim-only method

One previously proposed solution to the soft robot inverse
kinematics problem is called Soft IK [17]. This method
leverages a simulation model based on the finite element
method (FEM) to control a soft robot. We summarize the
approach here. Given a target position y′ for the soft robot,
a control objective O(y(u)) is written in terms of the robot’s
deformed pose. Optimal motor angles

u∗(y) = argmin
u
O(y(u))

are then found by performing a gradient-based minimization.
The difficulty is that for soft robots the relationship y(u)
between control and state is typically not an analytic ex-
pression. For a soft robot modeled as a finite element mesh,
y(u) is in fact computed by performing a highly nonlinear
minimization (see Equation (2) in Section IV). However, by
leveraging a powerful technique called sensitivity analysis
we can relate motor angles to robot state through the nodal
forces of the mesh, and exploit this relationship to compute
the Jacobian dx

du . This enables the use of a gradient-based
minimizer to find optimal motor angles.

C. Proposed Method: Using a learned differentiable model

In this work we use a different approach. Rather than using
a carefully-designed FEM simulation to guide our control,
we instead use a learned differentiable model.

In their most general form, the forward kinematics of a
soft robot are a map from motor angles u to end effector
position y, just like the forward kinematics equations of
a traditional rigid robotic manipulator. We can learn this
relationship in a supervised fashion. To do this, we train
a small feedforward neural network to map from control
inputs u to predicted corresponding quasi-static end effector
position y(u). We train on data {(u(i),y(i))}Ni=1, acquired
either in the real-world via motion capture (see Section III),
or in simulation (see Section IV).

Once the net has been trained, we can use it to find optimal
control inputs u∗ that bring the network’s prediction of robot
end effector position y(u) as close as possible to the target
position y′. We minimize the control objective

O(u) = 1

2

∥∥y(u)− y′
∥∥2 (1)

to find optimal control signals u∗. We use gradient descent
as our minimizer, and compute the gradient of the objective
dO
du = (y(u)− y′) dydu using the chain rule. The quantity dy

du
here is the network Jacobian, which relates changes in the
network’s input to changes in its output. In our particular
case, the network Jacobian explains how changes in control
input u affect changes in the predicted robot state y(u).
We explain the Jacobian of a feedforward neural network in
more detail in the appendix.

The use of a neural network as the model of forward
kinematics has several advantages over FEM. First its use of
real world data gives our controller knowledge of unknown
imperfections and asymmetries in the real-world robot, which
would be absent from an idealized simulation model. Ad-
ditionally, instead of having to perform a costly energy
minimization to evaluate the quality of each new candidate
control vector, we must only evaluate a small neural net.

Finally, we note that this overall approach works by find-
ing control signals that are optimal according to the neural
network. Therefore its success hinges on this net providing
accurate predictions of the robot’s real-world physics. If the
net itself is inaccurate, then the overall control method will
fail hopelessly when applied in reality. However if given a
properly trained net, the presented method proves to be quite
accurate. Quantitative results are shown in Section V.

D. Open-loop trajectory following

The control method presented above is formulated to
reach a single target position, but can also be applied to
do quasi-static trajectory following. Given a sequence of
target positions, the objective in Equation (1) is minimized
repeatedly for each subsequent target position. To improve
convergence, the solution for a given target position can be
used to warm-start the optimization for the next target. This
simple method proves quite powerful, and is used to generate
the results in Section V.

418



Fig. 2. A three-degree of freedom soft robot following a square-shaped target end-effector trajectory using motor angles u found using the method in
this paper. Motors are colored according to their corresponding control input trajectory.

III. IMPLEMENTATION DETAILS

Our first goal is to learn a quasi-static model of the soft
robot’s physics. In order to train a suitable neural network,
we need data pairs of the form (u(i),y(i)). Data acquisition
is in theory simple: We set the motors to angles u(i), read
the resulting end effector position y(i) from motion capture,
and repeat for the next vector of motor angles. However the
reality of capturing high-quality data is more involved.

The soft robots used in this work are made from flexible
foam. This material has the advantages that it is light and
easy to deform. However, the foam has some other properties
that make it somewhat difficult to capture training data for
a quasi-static model. If we contract and release a cable, we
observe the following behavior: 1) the motion of the robot
lags behind the action of releasing the cable, and 2) the
robot never quite returns to its initial position (preferring
to remain slightly bent). The robot therefore exhibits both
viscous effects and hysteresis. This is due to the material
properties of the foam, as well as friction.

We employ two tricks to ensure that our sampling is not
corrupted by these effects. First to combat the viscous effect,
we simply wait until the robot has stopped moving before
recording its position. This can be done in quite a reliable
fashion, since the robot is already inside a motion capture
setup: we wait until the robot’s current end effector position
is approximately equal to the average of the previous twenty
end effector positions. Next, to combat hysteresis we perform
a simple routine to erase the physical system’s memory
before taking each sample: We contract all cables together
by some nominal value, and then release them. We observe
in practice for the three-actuator arm in section V that this
technique effectively returns the robot to a neutral position.

We make a final note on the trade-off between quality
and speed when it comes to data capture. The techniques
presented in this section capture data much more slowly
than e.g. sweeping the robot through its workspace while
continually recording sample points, but they are also quite
reliable. For the example in this paper, we were able to
acquire a sufficient amount of high-quality data to train an
accurate network.

IV. SIMULATED DATA

The method in this paper does not require a simulation,
as the neural network can learn the forward kinematics
purely from motion capture data. Motion capture proves
to be incredibly useful for learning hard-to-model effects
like friction, or accounting for the minute asymmetries of
imperfect fabrication. However, motion capture also has an
inherent disadvantage: it is slow. In practice the procedure
described in the previous section captures real-world data at
a rate of approximately 300 samples per hour. For robots
with a high number of actuators, this makes it impossible
to densely sample the control space. Not only would the
motion capture simply take too long, but over the course of
the capture process the robot’s viscoelastic behavior would
likely change. This means that even if such a huge number
of samples could be acquired, the samples acquired earlier
on might no longer be relevant.

However, there is an alternative approach. We can leverage
numerical simulation to acquire some or all of our data.
We discretize the robot into tetrahedral neo-Hookean finite
elements, following the same method as [34], which mod-
els cables as one-sided quadratic springs running through
frictionless via points. The total deformation energy of the
system E(x,u) is written in terms of the mesh’s nodal
positions x and motor angles u. For a given vector of motor
angles u, the corresponding statically stable pose

x(u) = argmin
x
E(x,u) (2)

is found numerically, by minimizing the total energy of the
system. While this idealized simulation will not capture any
unanticipated effects or asymmetries, generating simulated
data is far faster than using motion capture (in part because
we do not need to employ the strategies from Section III, as
our simulation does not include viscosity or hysteresis).

Care must be taken to match the simulation to the spatial
position and orientation of the physical robot, in addition to
the robot’s physical dimensions and actuator layout. Once
the simulation is set up though, data can be captured quite
quickly, even in parallel or on multiple computers if nec-
essary. We use simulated data to train the neural network
model of the six-cable arm in Section V-B.

419



Fig. 3. Trajectory following for the three-cable robot. We show the real trajectories projected onto the plane for visual clarity, but note that the trajectories
are captured and evaluated in 3D.

V. RESULTS

A. Three-cable soft robotic arm

We control the three-cable foam robot shown in Figure 1
to follow various trajectories. This robot is a continuum soft
cylinder measuring 20 cm in length and 4 cm in diameter.

1) Fabrication: The body of the robot was cast from
expandable polyurethane foam (FlexFoam-iT!TMIII from
Smooth-On Inc), using the same technique as [10] and [34].
Small plastic eyelets were shallowly embedded in the foam
during casting, and braided fishing line cable routed through
them. Cables are pulled onto spools by geared servomotors
(Dynamixel XM-430’s), which causes the robot to bend.

A single motion capture marker is affixed to the tip of the
robot, and three additional markers are attached to its base
to establish the ground plane. Finally, the robot is secured
to the center of a motion capture setup, consisting of eight
Optitrack Prime 13 cameras.

2) Training: We sampled our training data from a 7×7×7
grid in actuator space, with each axis between 0 (for no
contraction) and u (a nominal max motor angle that struck a
balance between having a large workspace and not damaging
the robot). This gave us 343 equally-spaced sample points,
of which we discarded 35 as too aggressive to be safe for the
robot. To generate our training data, we sent the remaining
308 control signals to the robot following the procedure in
Section III, and recorded the resulting end effector positions.
Using the MATLAB Deep Learning Toolbox, we trained a
feedforward neural network on the entire gathered data set.
The overall network had three inputs, one for each motor
angle, and three outputs, one for each spatial degree of
freedom of the tip marker. Additionally the network had
two hidden layers, containing 20 neurons each, with sigmoid
activation functions. This neural net (trained on real data)
was used to create the first row of Figure 3 and Table I.

420



We repeated the same process with data collected on the
simulated robot, to train another (totally separate) network.
This neural net (trained on simulated data) was used to create
rows 2 and 3 of Figure 3 and Table I.

Fig. 4. Using a net trained on real data to control the real three-cable robot
arm to follow a 3D helical target. The target trajectory is shown in pink.

3) Evaluation: To evaluate the degree of accuracy to
which an FNN can model a soft robot’s physics, we ran the
following test. We split the real-world data into a training
set and a test set (90% and 10% of the data respectively),
and trained an FNN with the same architecture as the one
used in the previous section ten times with different random
data splits. The average mean squared error on the test
set was 1.53×10−5 mm2. The average Euclidean distance
between the predicted and measured tip position was found
to be 4.42 mm, corresponding to an average relative error
of approximately 1.6% of the robot’s workspace.

To evaluate the performance of our overall control method
we ran several tasks of the trajectory following type de-
scribed in Section II-D. The resulting end effector trajectories
are shown in Figures 3 and 4, and quantitative data on
accuracy is presented in Table I. Each row of Figure 3 and
Table I corresponds to a particular condition (e.g. using a
net trained on simulated data to control a real robot). Note
that each target trajectory (circle, rose, square) is the same
across conditions.

TABLE I
MEAN DISTANCE FROM TARGET IN CM FOR TRAJECTORY FOLLOWING

TASKS SHOWN IN FIGURE 3.

circle square rose
Real Data +
Real Robot 0.15 0.14 0.22

Sim Data +
Real Robot 0.68 0.62 0.92

Sim Data +
Sim Robot 0.05 0.06 0.04

The first row of Figure 3 shows our primary result. Using
the net trained on real data to control the real robot achieves
mean absolute tracking error of between 0.15 cm and 0.22 cm
depending on the task. The target trajectories in question are
around 6 cm to 10 cm across, so this error corresponds to
between 1.5% and 3.7% of the size of the trajectory.

The second row shows what happens when we control
the real robot using a network trained on data from the
idealized simulation described in Section IV. This method

succeeds in matching the general trajectory, but is much
less accurate, at around 0.62 cm to 0.92 cm mean absolute
tracking error. We make note of two important qualitative
discrepancies between the target trajectory and the trajectory
in the second row (Sim Data + Real Robot). The first
is scale. The real world trajectory is substantially smaller
than the target. This suggests that the real robot is not as
stiff as the simulation. This discrepancy could likely be
reduced with more accurate finte element modeling (perhaps
using a denser finite mesh element mesh, or running system
identification to better estimate the material parameters). The
second, more interesting discrepancy is translation. The real
world trajectory is shifted up along the vertical. The simula-
tion model expects a symmetric robot, but these trajectories
reveal that this is not the case in reality! The action of the
real world robot is apparently biased upwards, likely due to
imprecise fabrication techniques. The network trained on real
data manages to learn this physical asymmetry, giving the
controller the ability to compensate. The network trained on
simulated data has no knowledge of this asymmetry, leading
to the vertical offset we see in the second row.

The third row shows the result of controlling the simulated
robot using a network trained on simulated data. Tracking
error is quite low at around half a millimeter. This serves to
confirm that the network trained on simulated data does in
fact accurately model the physics of the simulation.

B. Simulated six-cable soft robotic arm

To explore how our method scales, we built a simulation
of a six-cable robotic arm. This robot has three pairs of
cables, each consisting of one long cable and one short
cable, both routed along the same path starting from the
robot’s base. The use of simulation enables us to quickly
prototype the robot’s design, as well as its controller. We
train a feedforward neural network with three hidden layers
of 25 neurons each on 15414 samples of simulated data.
We use this network to perform various trajectory following
tasks, some of which are shown in Figure 5. Please see our
supplementary video for additional tasks and animations.

Fig. 5. Trajectory following task for the two-stage, 6 tendons simulated
robot. Plots in cm, target in black, trajectory in pink.

421



VI. DISCUSSION AND FUTURE WORK

A. Network Complexity

To start understanding the effect of the network complexity
on model accuracy, we varied the number of neurons per
hidden layer while keeping the total number of hidden layers
constant at two. For each such architecture we performed
the following test ten times: We randomly split the data into
training, test, and validation sets (80%, 10% and 10% of the
data respectively), and trained until reaching either a stopping
criterion on the validation set (performance on validation set
allowed to decrease for maximum of 6 epochs), or on the
gradient (magnitude less than 10−6). We plot the average
absolute distance between the predicted and real tip position
against the number of neurons per hidden layer in Figure 6.

We observe the following trend. Very small networks per-
form poorly, likely because they are not expressive enough to
capture the robot’s physics. Increasing the size of the network
yields greater accuracy, as the network now has sufficient
expressive power. However, past a certain size we see model
accuracy decrease again, which we hypothesize is because
the data set we gathered was insufficiently large to properly
train such a large network train.

Fig. 6. Plot showing the observed trend between network complexity and
accuracy. Smaller networks are observed to be insufficiently expressive, and
larger networks seem to require more training data than we had available.

B. Efficient Sampling

Our control method relies on the trained neural network
being an accurate model of the robot’s physics. In practice,
we find that one reliable way to train an accurate network is
to sample data from a dense grid in actuator space. However,
as the number of actuators increases, we will face the curse
of dimensionality. This motivates the exploration of more
efficient sampling methodologies.

The specific number of samples we chose (i.e. the density
of the grid we sample from) could likely be reduced without
a large impact on the accuracy of the pipeline. It would
be interesting to explore the trade-off of sampling density
and model accuracy in depth, and determine exactly how
sparsely we can sample while still obtaining sufficiently
accurate results. It is also very likely that some network
architectures require less data to achieve accurate results,
and this could be investigated in conjunction with sampling
density. It could also be interesting to explore hybrid training
strategies that use both motion capture and simulated data to
achieve accurate results with limited real-world sampling.

Such an approach might first train a network on a large
amount of simulated data, and then fine-tune on real data.

The data gathering routine could also be sped up in the
future. The rate-limiting step is the time we spend waiting for
the viscous effects of the foam to disappear. To avoid this
problem entirely we could explore the use of less viscous
elastomers. We could also explore network architectures
capable of learning the viscous behavior.

C. Actuation strategies and dynamic motions
In this work we focused specifically on building a quasi-

static model of a soft foam robot’s physics, for which we
found a simple feed-forward neural network to be a sufficient
function approximator. An exciting avenue of future research
is to expand the space of soft robots we can reliably control.

We could apply this same general methodology to other
breeds of hard-to-model systems, such as soft fluidic elas-
tomer robots. In principle our method applies to any robot
where a number of control inputs lead to an observable
output state, however the specifics of the implementation–
including data gathering, and network training–might have
to be modified. Another exciting direction would be to learn
and plan dynamic motions. This would likely require more
sophisticated neural networks–capable of capturing a robot’s
dynamics and viscoelasticity [35]–as well as methods for
harnessing such networks to do control.

VII. CONCLUSION

In this work we showed how to control a soft robot using
a learned differentiable model. We gathered data from either
real-world motion capture or finite element simulation, and
trained a neural network to predict a soft robot’s quasi-static
physics. We defined a suitable control objective in terms
of this neural network’s output, and computed its gradient
using the network Jacobian. We performed a gradient-based
optimization to do open-loop trajectory following, and ran
our method on a real-world cable-driven foam robot, achiev-
ing mean absolute error of only one or two millimeters.
The overall method we present is general. It provides an
effective framework for learning a soft robot’s physics, and
leveraging this knowledge to do control, even in the face of
unanticipated fabrication defects and asymmetries.

APPENDIX

The network Jacobian of a feedforward neural network
We use a feedforward neural network to map from control

input u to predicted robot end effector position y. The
control input forms the input layer a0 = u, and the predicted
robot end effector position forms the output layer an = y. In
between the input and output layers, there are n− 2 hidden
layers, which we denote a1, ...,an−1. The activation of the
network’s i-th layer is defined to be ai = σi(w

T
i ai−1+bi),

where σi is a differentiable activation function, and wi and
bi are the i-th layer’s weights and biases respectively. The
overall map from input to output is differentiable, and so we
can apply the chain rule to yield the network Jacobian.

dy

du
=
dan

da0
=

dan

dan−1

dan−1

dan−2

dan−2

dan−3
· · · da1

da0

422



REFERENCES

[1] M. M. Tanouye and V. Vikas, “Optimal learning and surface
identification for terrestrial soft robots,” in 2018 IEEE International
Conference on Soft Robotics, Apr. 2018, pp. 443–448.

[2] J. Lee, J. Eom, W. Choi, and K. Cho, “Soft LEGO: Bottom-Up
Design Platform for Soft Robotics,” in 2018 IEEE/RSJ International
Conference on Intelligent Robots and Systems, Oct. 2018, pp.
7513–7520.

[3] M. Manti, A. Pratesi, E. Falotico, M. Cianchetti, and C. Laschi,
“Soft assistive robot for personal care of elderly people,” in 2016
6th IEEE International Conference on Biomedical Robotics and
Biomechatronics, June 2016, pp. 833–838.

[4] G. Lee, Y. Ding, I. G. Bujanda, N. Karavas, Y. M. Zhou, and
C. J. Walsh, “Improved assistive profile tracking of soft exosuits for
walking and jogging with off-board actuation,” in 2017 IEEE/RSJ
International Conference on Intelligent Robots and Systems, Sept.
2017, pp. 1699–1706.

[5] E. C. Goldfield, Y.-L. Park, B.-R. Chen, W.-H. Hsu, D. Young,
M. Wehner, D. G. Kelty-Stephen, L. Stirling, M. Weinberg,
D. Newman, R. Nagpal, E. Saltzman, K. G. Holt, C. Walsh, and R. J.
Wood, “Bio-Inspired Design of Soft Robotic Assistive Devices: The
Interface of Physics, Biology, and Behavior,” Ecological Psychology,
vol. 24, no. 4, pp. 300–327, Oct. 2012.

[6] J. Burgner-Kahrs, D. C. Rucker, and H. Choset, “Continuum Robots
for Medical Applications: A Survey,” IEEE Transactions on Robotics,
vol. 31, no. 6, pp. 1261–1280, Dec. 2015.

[7] K.-J. Cho, J.-S. Koh, S. Kim, W.-S. Chu, Y. Hong, and S.-H. Ahn,
“Review of manufacturing processes for soft biomimetic robots,”
International Journal of Precision Engineering and Manufacturing,
vol. 10, no. 3, pp. 171–181, July 2009.

[8] F. Schmitt, O. Piccin, L. Barbé, and B. Bayle, “Soft Robots
Manufacturing: A Review,” Frontiers in Robotics and AI, vol. 5,
2018.

[9] C. Laschi, B. Mazzolai, and M. Cianchetti, “Soft robotics:
Technologies and systems pushing the boundaries of robot abilities,”
Science Robotics, vol. 1, no. 1, p. eaah3690, Dec. 2016.

[10] L. Somm, D. Hahn, N. Kumar, and S. Coros, “Expanding Foam as the
Material for Fabrication, Prototyping and Experimental Assessment
of Low-Cost Soft Robots With Embedded Sensing,” IEEE Robotics
and Automation Letters, vol. 4, no. 2, pp. 761–768, Apr. 2019.

[11] C. Shin, P. W. Ferguson, S. A. Pedram, J. Ma, E. P. Dutson, and
J. Rosen, “Autonomous Tissue Manipulation via Surgical Robot Using
Learning Based Model Predictive Control,” in 2019 International
Conference on Robotics and Automation, May 2019, pp. 3875–3881.

[12] M. T. Gillespie, C. M. Best, E. C. Townsend, D. Wingate, and
M. D. Killpack, “Learning nonlinear dynamic models of soft robots
for model predictive control with neural networks,” in 2018 IEEE
International Conference on Soft Robotics, Apr. 2018, pp. 39–45.

[13] T. G. Thuruthel, E. Falotico, F. Renda, and C. Laschi, “Model-Based
Reinforcement Learning for Closed-Loop Dynamic Control of Soft
Robotic Manipulators,” IEEE Transactions on Robotics, vol. 35,
no. 1, pp. 124–134, Feb. 2019.

[14] N. N. Goldberg, X. Huang, C. Majidi, A. Novelia, O. M. O’Reilly,
D. A. Paley, and W. L. Scott, “On planar discrete elastic rod models
for the locomotion of soft robots,” Soft robotics, 2019.

[15] M. Thieffry, A. Kruszewski, C. Duriez, and T. Guerra, “Control
Design for Soft Robots Based on Reduced-Order Model,” IEEE
Robotics and Automation Letters, vol. 4, no. 1, pp. 25–32, Jan. 2019.

[16] C. Duriez, “Control of elastic soft robots based on real-time finite
element method,” in IEEE International Conference on Robotics and
Automation. IEEE, 2013, pp. 3982–3987.

[17] J. M. Bern, G. Kumagai, and S. Coros, “Fabrication, modeling, and
control of plush robots,” in IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS). IEEE, 2017, pp. 3739–3746.

[18] D. Hahn, P. Banzet, J. M. Bern, and S. Coros, “Real2sim:
Visco-elastic parameter estimation from dynamic motion,” ACM
Transactions on Graphics, vol. 38, no. 6, pp. 1–13, 2019.

[19] H. Wang, J. Chen, H. Y. K. Lau, and H. Ren, “Motion Planning Based
on Learning From Demonstration for Multiple-Segment Flexible Soft
Robots Actuated by Electroactive Polymers,” IEEE Robotics and
Automation Letters, vol. 1, no. 1, pp. 391–398, Jan. 2016.

[20] G. Fang, X. Wang, K. Wang, K. Lee, J. D. L. Ho, H. Fu, D. K. C.
Fu, and K. Kwok, “Vision-Based Online Learning Kinematic Control
for Soft Robots Using Local Gaussian Process Regression,” IEEE

Robotics and Automation Letters, vol. 4, no. 2, pp. 1194–1201, Apr.
2019.

[21] J. Chen and H. Y. K. Lau, “Learning the inverse kinematics of
tendon-driven soft manipulators with K-nearest Neighbors Regression
and Gaussian Mixture Regression,” in 2016 2nd International
Conference on Control, Automation and Robotics, Apr. 2016, pp.
103–107.

[22] D. Bruder, B. Gillespie, C. D. Remy, and R. Vasudevan, “Modeling
and control of soft robots using the koopman operator and model
predictive control,” arXiv preprint arXiv:1902.02827, 2019.

[23] T. G. Thuruthel, B. Shih, C. Laschi, and M. T. Tolley, “Soft
robot perception using embedded soft sensors and recurrent neural
networks,” Science Robotics, vol. 4, no. 26, p. eaav1488, 2019.

[24] M. Li, R. Kang, D. T. Branson, and J. S. Dai, “Model-free control for
continuum robots based on an adaptive kalman filter,” IEEE/ASME
Transactions on Mechatronics, vol. 23, no. 1, pp. 286–297, 2017.

[25] M. Kovandžić, V. Nikolić, M. Simonović, I. Ćirić, and A. Al-Noori,
“Soft robot positioning using artificial neural net,” Facta Universitatis,
Series: Automatic Control and Robotics, vol. 18, no. 1, pp. 019–030,
Sept. 2019.

[26] H. T. Kalidindi, T. G. Thuruthel, C. Laschi, and E. Falotico,
“Cerebellum-inspired approach for adaptive kinematic control of soft
robots,” in 2019 2nd IEEE International Conference on Soft Robotics,
Apr. 2019, pp. 684–689.

[27] F. Holsten, M. P. Engell-Nørregård, S. Darkner, and K. Erleben, “Data
Driven Inverse Kinematics of Soft Robots using Local Models,” in
2019 International Conference on Robotics and Automation, May
2019, pp. 6251–6257.

[28] H. Jiang, Z. Wang, X. Liu, X. Chen, Y. Jin, X. You, and X. Chen,
“A two-level approach for solving the inverse kinematics of an
extensible soft arm considering viscoelastic behavior,” in 2017 IEEE
International Conference on Robotics and Automation, May 2017, pp.
6127–6133.

[29] K.-H. Lee, D. K. Fu, M. C. Leong, M. Chow, H.-C. Fu, K. Althoefer,
K. Y. Sze, C.-K. Yeung, and K.-W. Kwok, “Nonparametric Online
Learning Control for Soft Continuum Robot: An Enabling Technique
for Effective Endoscopic Navigation,” Soft Robotics, vol. 4, no. 4,
pp. 324–337, Aug. 2017.

[30] M. Giorelli, F. Renda, M. Calisti, A. Arienti, G. Ferri, and C. Laschi,
“A two dimensional inverse kinetics model of a cable driven ma-
nipulator inspired by the octopus arm,” in 2012 IEEE International
Conference on Robotics and Automation. IEEE, 2012, pp. 3819–
3824.

[31] M. I. Jordan and D. E. Rumelhart, “Forward models: Supervised
learning with a distal teacher,” Cognitive science, vol. 16, no. 3, pp.
307–354, 1992.

[32] A. Melingui, O. Lakhal, B. Daachi, J. B. Mbede, and R. Merzouki,
“Adaptive neural network control of a compact bionic handling arm,”
IEEE/ASME Transactions on Mechatronics, vol. 20, no. 6, pp. 2862–
2875, 2015.

[33] S. Vijayakumar, “Machine learning & sensorimotor control lec-
ture xi - learning with distal teachers (forward and inverse mod-
els),” http://www.inf.ed.ac.uk/teaching/courses/mlsc/Notes/Lecture11/
MLSC Lec11.pdf, February 2007.

[34] J. Bern, P. Banzet, R. Poranne, and S. Coros, “Trajectory optimization
for cable-driven soft robot locomotion,” in Proceedings of Robotics:
Science and Systems, FreiburgimBreisgau, Germany, June 2019.

[35] S. Han, T. Kim, D. Kim, Y. Park, and S. Jo, “Use of Deep Learning
for Characterization of Microfluidic Soft Sensors,” IEEE Robotics and
Automation Letters, vol. 3, no. 2, pp. 873–880, Apr. 2018.

423


